

Joint Modeling in Recommendations: Fundamentals and Advances

Xiangyu Zhao¹

Yichao Wang²

Pengyue Jia¹

Huifeng Guo²

Ruiming Tang²

Bo Chen²

Yuhao Wang¹

Xiangyu Zhao, City University of Hong Kong

Huawei Noah's Ark Lab

¹City University of Hong Kong, ²Huawei Noah's Ark Lab

Information overload

Items can be Products, News, Movies, Videos, Friends, etc.

Recommender Systems

- Recommendation has been widely applied in online services
 - E-commerce, Content Sharing, Social Networking, etc.

Product Recommendation

Frequently bought together

Recommender Systems

Recommendation has been widely applied in online services

E-commerce, Content Sharing, Social Networking, etc. lacksquare

News/Video/Image Recommendation

Recommended based on your interests

More For you

This Research Paper From Google Research Proposes A 'Message Passing Graph Neural Network' That Explicitly Models Spatio-Temporal Relations MarkTechPost · 2 days ago

Tested: Brydge MacBook Vertical Dock, completing my MacBook Pro desktop 9to5Mac · 21 hours ago

CrazyFrogVE

Crazy Frog - Axel F CrazyFrogVEVO CrazyFrogVEV0

Champions (Ding a Dang 35,174,544 views + 5 years ago CrazyFrogVEVO 🖾 45,163,066 views • 6 years ago

Construction Fail Compilation Truck Fail Compilation 2015 2015 NEW! Papiaani 2.524.529 views • 3 months ago

1,382,590 views • 1 month ago 2,672,347 views • 1 year ago

Recommender Systems

Recommendation has been widely applied in online services

• E-commerce, Content Sharing, Social Networking, etc.

Friend Recommendation

Deep Recommender Architecture

Advantages

- Feature representations of users and items
- Non-linear relationships between users and items

Output Layer BCE, BPR, MSE

Feature Interaction Layer

Pooling, convolution, and the number of layers, inner product, outer product, convolution, etc.

System Design

Hardware infrastructure, data pipeline, information transfer, implementation, deployment, optimization, evaluation, etc.

HUAWE

CityU

HUAWEI

Joint Modeling in Recommendations

- > Handling the inter-dependency between users and items under more complex circumstances
- Advantages
 - One model for several situations
 - Performance improvement caused by information sharing in different situations
- > Two typical representatives:
 - Multi-task recommendation (MTR)
 - Multi-scenario recommendation (MSR)

Joint Modeling in Recommendations

> More joint modeling methods:

- Multi-modal recommendation
- Multi-interest recommendation

- Large language model-based recommendation

Large language model-based recommendation

Agenda

- Multi-Task Recommendation:
 - Independent tasks: Comments, repost, likes, bookmarks
 - Multi-stage conversion tasks: click, application, approval, activation ...

How to extract useful information from other tasks ?

How to capture task dependences and resolve the sparsity issue ?

Modeling the sequential dependence among audience multi-step conversions with multi-task learning in targeted display advertising. KDD 2021.

Kh5

极米坚果查看全部

直播讲解

用3D高清智能投 ¥2888.00

极米NEW Z8X 投 影仪家用 投影机

推荐搭配

Multi-Scenario Recommendation: construct multiple scenarios for user diverse requirements.

← 番茄免费小说 Q 2。	← Q video × SEARCH	Q 投影仪家用 🙆 🕀	○ 极米投影仪京东自营 极兴
Introduction Comments 12.1K Featured		推荐 爱车 家电 医药健康 生鲜 美妆 食 三分类	为你推荐 ,周边好物
Intro	HaoKan Video 40.3 MB · 7,578M installs	超市 3 3 世 0元 前时 京东超市 京东电器 京东国际 免费水果 京东到家	
【抖音旗下】 番茄小说是抖音推出的免费阅读产品, 提供海量正版小说。免费好书,尽在番茄!还 >	♪	方 方 一 「 95所 百女帝母 英信山山 協古口 供給 DLUS 05 折	
About	TIL:5 MB · 14,314M Installs		极米Z6X 第四代 极米Z7X 投影仪 投影仪家田 轻薄 家田 轻薄投影机
Version 5.8.7.32 Developer 北京臻鼎科技有限公司			
Privacy Policy VIEW CONTENT Permissions VIEW PERMISSIONS	映客直播 145.4 MB · 212M installs	¥ 190.7 ¥ 588 ¥ 298 ¥ 142	
Related apps More >		9.9包邮 京东直播	
🥙 🍄 起点 👯 🦏	Q Video Player - OPlayer Lite	10 10 V269	极米Z6X 第四代 极米 (XGIMI) N 投影仪家用 轻薄 EW Z8X 投影仪
番茄畅听 七猫免费小说 起点读书 今日头条极 得间小	〇 Video star剪辑		+2407 1009 1000
INSTALL INSTALL INSTALL INSTALL INSTALL	Q Filmigo - Video Editor	12(不)(2,5)() 多屏互动 超薄机身	详情
Trending this week More 〉	Q Audio Video Editing		② 规格参数
	Q Tencent video		商品编号 10071752789746
all(RR)311 日皮入子M 技型Allfill I系Iの物 快看液 INSTALL INSTALL INSTALL INSTALL INSTAL	Q Video Player - Media Player	TIFFANY&CO. 品质优选	i () () () () ()

How to extract more comprehensive user portrait from interactions in different scenarios, and make recommendations based on the characteristics of the current scenario ?

Multi-Modal Modeling: user interactions, images, text ...

How to extract and align data from different modalities ?

Multi-Behavior Modeling: click, download, like, buy

How to learn the relationship between different type of behaviors ?

 \succ Multi-Interest Modeling: behaviors \rightarrow interests

How to accurately and efficiently extract users' diverse interests from user behaviors ?

Large Language Model-based Recommendation

Trained on labeled data with supervised learning

Collaborative signals

ID-based in-domain collaborative knowledge

DRS

Pre-trained on large-scale corpora with self-supervised learning

Semantic signals

Generalization, reasoning and open-world knowledge

Relations and Formulations of Joint Modeling

CityU

HUAWEI

Agenda

Multi-Task Recommendation (MTR)

Multi-Task Deep Recommender Systems (MTDRS)

≻ How

• Multi-Task Learning (MTL) + Deep Neural Networks

≻Why

- Learning high-order feature interactions and
- Modeling complex user-item interaction behaviors

> Benefits

- Mutual enhancement among tasks
- Higher efficiency of computation and storage

>Challenges

- Effectively and efficiently capture useful information & relevance among tasks
- Data sparsity
- Unique sequential dependency

Multi-task Recommendation

CityU

HUAWEI

Formulation

> Problem:

- Learning MTL model with task-specific parameters $(\theta^1, \dots, \theta^K)$ and shared parameter θ^s , which outputs the **K** task-wise predictions
- > Optimization problem:

$$\underset{\{\theta^{1},...,\theta^{K}\}}{\arg\min} \mathcal{L}\left(\theta^{s},\theta^{1},\cdots,\theta^{K}\right) = \underset{\{\theta^{1},...,\theta^{K}\}}{\arg\min} \sum_{k=1}^{K} \omega^{k} L^{k}\left(\theta^{s},\theta^{k}\right)$$

- $\mathcal{L}(\theta^s, \theta^k)$: loss function for k-th task with parameter θ^s, θ^k
- ω^k : loss weight for k-th task

$$\mathsf{BCE \ loss} \qquad L^k\left(\theta^s, \theta^k\right) = -\sum_{n=1}^N \left[y_n^k \log\left(\hat{y}_n^k\right) + \left(1-y_n^k\right) \log\left(1-\hat{y}_n^k\right)\right]$$

CityU

HUAWEI

Task	Description	Explanation
CV	Multi-target segmentation and further classification for each object	Utilizing feature transformation to represent common features based on a multi-layer feed-forward network
NLP	Mostly focus on the design of MTL architectures	Based on RNN because of the sequence pattern Can be divided into word-, sentence-, and document-level by granularity

Taxonomy

> Tasks independently calculated without sequential dependency

>Objective function: Weighted sum with constant loss weights

Cascaded task relationship: sequential dependency

> Computation of current task depends on **previous** ones

• E.g. $CTCVR = CTR \times CVR$

General formulation:

$$\hat{y}_{n}^{k}\left(\theta^{s},\theta^{k}\right) - \hat{y}_{n}^{k-1}\left(\theta^{s},\theta^{k}\right) = P\left(\epsilon_{k}=0,\epsilon_{k-1}=1\right)$$

- ϵ_k : Indicator variable for task k
- Difference is the probability of the task k not happening while the task k-1 is observed

Model	Problem	Behavior Sequence
ESMM [Ma et al., 2018b]	SSB & DS	impression \rightarrow click \rightarrow conversion
ESM ² [Wen et al., 2020]	SSB & DS	impression \rightarrow click \rightarrow D(O)Action \rightarrow purchase
Multi-IPW & DR [Zhang et al., 2020]	SSB & DS	$exposure \rightarrow click \rightarrow conversion$
ESDF [Wang et al., 2020b]	SSB & DS & time delay	impression \rightarrow click \rightarrow pay
HM ³ [Wen <i>et al.</i> , 2021]	SSB & DS & micro and macro behavior modeling	$impression \rightarrow click \rightarrow micro \rightarrow macro \rightarrow purchase$
AITM [Xi et al., 2021]	sequential dependence in multi-step conversions	$impression \rightarrow click \rightarrow application \rightarrow approval \rightarrow activation$
MLPR [Wu et al., 2022]	sequential engagement & vocabulary mismatch in product ranking	$impression \rightarrow click \rightarrow add\text{-to-cart} \rightarrow purchase$
ESCM ² [Wang et al., 2022a]	inherent estimation bias & potential independence priority	impression \rightarrow click \rightarrow conversion
HEROES [Jin et al., 2022]	multi-scale behavior & unbiased learning-to-rank	observation \rightarrow click \rightarrow conversion
APEM [Tao et al., 2023]	sample-wise representation learning in SDMTL	$impression \rightarrow click \rightarrow authorize \rightarrow conversion$
DCMT [Zhu et al., 2023]	SSB & DS & potential independence priority (PIP)	$exposure \rightarrow click \rightarrow conversion$

SSB: Sample Selection Bias DS: Data Sparsity

ESMM

- > A task specified as the main task
 - while associated auxiliary tasks help to improve performance
- Probability estimation for main task the probability of auxiliary tasks
- Provide richer information across entire space

Model	References	Method
ESDF Multi-IPW and Multi-DR DMTL Metabalance	[Wang et al., 2020b] [Zhang et al., 2020] [Zhao et al., 2021] [He et al., 2022]	Adopt the original recommendation tasks as auxiliaries
MTRec PICO MTAE Cross-Distill	[Li et al., 2020a] [Lin et al., 2022] [Yang et al., 2021] [Yang et al., 2022a]	Manually design various auxiliary tasks
CSRec	[Bai et al., 2022]	Contrastive learning as the auxiliary
Self-auxiliary*	[Wang et al., 2022b]	Under-parameterized self-auxiliaries

Parameter Sharing

CityU

HUAWEI

Parameter Sharing

Hard Sharing

- Shared bottom layers extract the same information for different tasks,
 Task-specific top layers are trained individually
- Improving computation efficiency and alleviating over-fitting
- X Limited capacity of the shared parameter space → Weakly related tasks and noise

Sparse Sharing

- Extracting sub-networks for each task by parameter masks from a base network
 Special case of Hard Sharing
- ✓ Coping with the weakly related tasks flexibly
- X Negative transfer when updating shared parameters

CSRec

A Contrastive Sharing Model for Multi-task Recommendation. WWW 2022.

Soft Sharing

- Building separate models for tasks but the information among tasks is fused by weights of task relevance
- Relatively high **flexibility** in parameter sharing v.s. hard sharing
- X Can not reconcile the flexibility
- X Computation cost of the model

Expert Sharing

- Employing multiple expert networks to extract knowledge from shared bottom
 - \rightarrow Fed into **task-specific** modules like gates
 - \rightarrow Passed into the task-specific tower
- Mainly non-sequential input features
- Special case of Soft Sharing

ΜΜοΕ

Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-of-experts. KDD 2018.

Model	Reference	
ΜΜοΕ	[Ma et al., 2018a]	
SNR	[Ma et al., 2019]	
PLE	[Tang et al., 2020]	
DMTL	[Zhao et al., 2021]	
DSelect-k	[Hazimeh et al. <i>,</i> 2021]	
MetaHeac	[Zhu et al., 2021]	
PFE	[Xin et al., 2022]	
MVKE	[Xu et al., 2022]	
FDN	[Zhou et al., 2023]	
MoSE	[Qin et al., 2020]	

Processing **non-sequential** input features, while the remaining models is ameliorated based on MMoE

Processing **sequential** input features utilizing LSTM & sequential experts

HUAWEI

Negative Transfer

Gradient dominating $\|\nabla_{\theta} L^{k}(\theta)\|$

Works	Approach
AdaTask [Yang et al., 2022b]	Quantifying task dominance of shared parameters, calculate task-specific accumulative gradients
MetaBalance [He et al., 2022]	Flexibly balancing the gradient magnitude proximity between auxiliary and target tasks by a relax factor

Opposite directions of gradient + - $\nabla_{\theta} L^k(\theta)$

Works	Approach
PLE [Tang et al., 2020]	Proposing customized gate control (CGC) separating shared and task-specific experts
CSRec [Bai et al., 2022]	Alternating training procedure and contrastive learning on parameter masks to reduce the conflict probability

MetaBalance

$$\theta^{t+1} = \theta^{t} - \alpha * \mathbf{G}_{total}^{t}$$
$$\mathbf{G}_{total}^{t} = \nabla_{\theta} \mathcal{L}_{total}^{t} = \nabla_{\theta} \mathcal{L}_{tar}^{t} + \sum_{i=1}^{K} \nabla_{\theta} \mathcal{L}_{aux,i}^{t}$$

Metabalance: Improving Multi-task Recommendations via Adapting Gradient Magnitudes of Auxiliary Tasks. WWW 2022.

HUAWE

MetaBalance

MetaBalance

Objectives optimized regardless of the **potential conflict**

Works	Trade-off
[Wang <i>et al.,</i> 2021]	Group fairness and accuracy
[Wang <i>et al.,</i> 2022b]	Minimizing task conflicts and improving multi-task generalization

Training Mechanism

Training process & Learning strategy

Joint Training

Parallel manner

Category	Reference
Session-based RS	[Shalaby et al., 2022] [Qiu et al., 2021] [Meng et al., 2020]
Route RS	[Das, 2022]
Knowledge graph enhanced RS	[Wang et al., 2019]
Explainability	[Lu et al., 2018] [Wang et al., 2018]
Graph-based RS	[Wang et al., 2020a]

Sequential user behaviors as MDP

Summary	Reference
Formulating MTF as MDP and use batch RL to optimize long-term user satisfaction	[Zhang et al., 2022b]
Using an actor-critic model to learn the optimal fusion weight of tasks rather than greedy ranking strategies	[Han et al., 2019]
Using dynamic critic networks to adaptively adjust the fusion weight considering the session-wise property	[Liu et al., 2023]

Joint training & Others

Summary	Reference
Employing Expectation-Maximization (EM) algorithm for optimization	ESDF [Wang et al., 2020b]
Trained with task-specific sub- networks	Self-auxiliaries [Wang et al., 2022b]

- **E-commerce** : Main focus
- > Advertising
- Utility & Cost
 - i. MM-DFM [Hou et al., 2021]: Performing multiple conversion prediction tasks in different observation duration
 - ii. MetaHeac [Zhu et al., 2021]: Handling audience expansion tasks on contentbased mobile marketing

iii. MVKE [Xu et al., 2022]: Performing user tagging for online advertising

Social media

- i. MMoE [Zhao et al., 2019b]: YouTube engagement and satisfaction
- ii. LT4REC [Xiao et al., 2020]: Tencent Video
- iii. BatchRL-MTF [Zhang et al., 2022b]: Tencent short video platform

Datasets	Stage	Tasks	Website
Ali-CCP [42]	Ranking	CTR, CVR	https://tianchi.aliyun.com/dataset/408/
Criteo [13]	Ranking	CTR, CVR	https://ailab.criteo.com/criteo-attribution-modeling-bidding-dataset/
AliExpress [32]	Ranking	CTR, CTCVR	https://tianchi.aliyun.com/dataset/74690/
MovieLens [23]	Recall & Ranking	Watch, Rating	https://grouplens.org/datasets/movielens/
Yelp	Recall & Ranking	Rating, Explanation	https://www.yelp.com/dataset/
Amazon [25]	Recall & Ranking	Rating, Explanation	http://jmcauley.ucsd.edu/data/amazon/
Kuairand [18]	Recall & Ranking	Click, Like, Follow, Comment,	https://kuairand.com/
Tenrec [77]	Recall & Ranking	Click, Like, Share, Follow,	https://github.com/yuangh-x/2022-NIPS-Tenrec/

Торіс	Challenge & future direction
Negative Transfer	 Extra complex inter-task correlation What, where, and when to transfer to alleviate negative transfer
AutoML	 Existing models only focus on the parameter sharing routing, while other components and hyper-parameters still under-explored
Explainability	Complex task relevance
Task-specific Biases	 Most existing models only focus on one specific bias Multiple bias should be tackled in future

Торіс	Challenge & future direction
Negative Transfer	 Extra complex inter-task correlation What, where, and when to transfer to alleviate negative transfer
AutoML	 Existing models only focus on the parameter sharing routing, while other components and hyper-parameters still under-explored
Explainability	Complex task relevance
Task-specific Biases	 Most existing models only focus on one specific bias Multiple bias should be tackled in future

Торіс	Challenge & future direction
Negative Transfer	 Extra complex inter-task correlation What, where, and when to transfer to alleviate negative transfer
AutoML	 Existing models only focus on the parameter sharing routing, while other components and hyper-parameters still under-explored
Explainability	Complex task relevance
Task-specific Biases	 Most existing models only focus on one specific bias Multiple bias should be tackled in future

HUAWE

Торіс	Challenge & future direction
Negative Transfer	 Extra complex inter-task correlation What, where, and when to transfer to alleviate negative transfer
AutoML	 Existing models only focus on the parameter sharing routing, while other components and hyper-parameters still under-explored
Explainability	Complex task relevance
Task-specific Biases	 Most existing models only focus on one specific bias Multiple bias should be tackled in future

HUAWE

► Task relation:

Parallel, Cascaded, Auxiliary with Main

Methodology:

Parameter Sharing, Optimization, Training Mechanism

https://arxiv.org/abs/2302.03525

Multi-Task Deep Recommender Systems: A Survey

YUHAO WANG*, HA TSZ LAM*, and YI WONG*, City University of Hong Kong ZIRU LIU, City University of Hong Kong XIANGYU ZHAO[†], City University of Hong Kong YICHAO WANG, BO CHEN, HUIFENG GUO, and RUIMING TANG[†], Huawei Noah's Ark Lab

Trend of MTDRS

HUAWEI

Agenda

Multi-Scenario Recommender Systems

CityU

HUAWEI

Background

- Multi-Scenario Recommender Systems:
 - By using a unified model to simultaneously model multiple scenarios, the goal of improving the effects of different scenarios at the same time is achieved through information transfer between scenarios.
- > Importance:
 - Time/Memory efficiency; Maintenance cost
 - Accuracy
- Classification on Methods:
 - Shared-Specific network paradigm
 - Dynamic weight
 - Multi-scenario & Multi-task recommendation

> Formulation:

 $wL(E^{Merge}, \Theta, \Theta^t, \Theta^s)$

- θ : parameters of the backbone network
- θ^{S} : parameters of modeling scenarios

Recommendation Scenarios

➤What is Scenario?

- Homepage, Searching page, Detailed page ...
- Food, Leisure and entertainment, ...
- Usually refers to different business scenarios

Scenario and Domain?

- Generally do not make a distinction
- The same in this tutorial

Commonalities and Diversities

- ➤Commonalities
 - User Overlap

Commonalities

• Item Overlap

HUAWE

Commonalities and Diversities

➢ Diversities

- The specific user group may be different
- User's interest changes with the scenarios

Table of Contents

Shared-specific network paradigm $wL(E^{Merge}, \Theta, \Theta^t, (\Theta^{shared}, \Theta^{specific}))$ Dynamic weight $wL(E^{Merge}, \Theta, \Theta^t, \Theta^s)$ Multi-Scenario & Multi-Task $wL(E^{Merge}, \Theta, \Theta^t, \Theta^s, \Theta^T)$

Scenario
Shared-specific Network Paradigm

One data sample from scenario 1

HUAWE

Shared-specific Network Paradigm

HUAWE

Shared-specific Network Paradigm

HUAWE

STAR

- > Motivation:
 - Training individual models for each domain → does not fully use the data from all domains
 - Data across domains owns commonalities and characteristics

> Target:

- Use a single model to serve multiple domains simultaneously
- Shared network → commonalities
- Specific network \rightarrow characteristics
- > Methods:
 - Partitioned Normalization
 - STAR Topology
 - Auxiliary Network

Guess What You Like

Partitioned Normalization (PN)

> Training

$$z' = (\gamma * \gamma_p) rac{z-\mu}{\sqrt{\sigma^2+\epsilon}} + (eta+eta_p)$$

Testing

$$\mathrm{z}' = (\gamma * \gamma_p) rac{\mathrm{z} - E_p}{\sqrt{Var_p + \epsilon}} + (eta + eta_p)$$

Compared to BN

Batch Normalization (BN)

➤ Training

$$\mathbf{z'} = \gamma rac{\mathbf{z} - \mu}{\sqrt{\sigma^2 + \epsilon}} + eta$$

> Testing

$$\mathbf{z'} = \gamma \frac{\mathbf{z} - E}{\sqrt{Var + \epsilon}} + \beta$$

STAR Details

STAR Topology

The final weight and bias for p-th domain is obtained by:

$$W_p^\star = W_p \otimes W, b_p^\star = b_p + b$$

The output for p-th domain is derived by:

$$out_p = \phi((W_p^\star)^ op in_p + b_p^\star)$$

 \otimes element-wise product

Motivation

• Traffic characteristics of different scenarios are significantly different (individual data scale or representative topic)

➤Target

• Train a unified model to serve all scenarios

SAR-Net Details

Cross-Scenario Behavior Extract Layer

How to aggregate the sequence?

$$\begin{split} \alpha_k^i &= \frac{\exp(\psi(\mathbf{p}_k^i, \mathbf{p}_t^i))}{\sum_{l=1}^{|\mathbf{p}(B^i)|} \exp(\psi(\mathbf{p}_l^i, \mathbf{p}_t^i))}.,\\ \alpha_k^s &= \frac{\exp(\psi(\mathbf{p}_k^s, \mathbf{p}_t^s))}{\sum_{l=1}^{|\mathbf{p}(B^s)|} \exp(\psi(\mathbf{p}_k^s, \mathbf{p}_t^s))}, \end{split}$$

$$\mathbf{p}_{k}^{i} = [\mathbf{e}_{itemId} || \mathbf{e}_{destination} || \mathbf{e}_{category} || \cdots]$$

$$\mathbf{v}_{cb} = \sum_{k=1}^t lpha_k^i st lpha_k^s st \mathbf{p}_k^i$$

SAR-Net

Scenario-Specific Transform Layer

$$\mathbf{v'} = \mathbf{v} \otimes eta_i + \gamma_i$$

Mixture of Debias Experts

Multi-expert network. Each scenario has some scenariospecific experts and all the scenarios share several common experts. **SAR-Net**

Multi-Gate Network & Prediction

The output of experts:

$$S^{k}(x) = [o_{k,1}, o_{k,2}, \cdots, o_{k,m_{k}}, o_{s,1}, o_{s,2}, \cdots, o_{s,m_{s}}]^{T}$$

Final predicted score of scenario \boldsymbol{k}

 $y^k(x) = w^k(x)S^k(x)$

 $w^k(x)$ is derived by a single-layer feedforward network with a SoftMax activation function

➤ Motivation

- Separate model for each scenario, ignoring the cross-domain overlapping of user groups and items
- One shared model trained on mix data, model performance may decrease when different domains conflict

►Target

- Modeling commonalities and diversities \rightarrow common networks and domain-specific networks
- Tackle the feature-level domain adaptation → domain-specific batch normalization, domain interest adaptation layer

Backbone Network

Shared Network & Domain-Specific Network

$$egin{aligned} & z_k = rac{W^k_{shared}(f_{domain}) + b^k_{shared}}{\sum_{n=1}^K (W^n_{shared}(f_{domain}) + b^n_{shared})} \ & E_{shared} = \sum_{k=1}^K lpha_k MLP^k_{shared}(\mathbf{F}) \ & E^{(d)}_{spec} = MLP^{(d)}_{spec}(\mathbf{F}^{(d)}) \end{aligned}$$

 f_{domain} Domain indicator embedding $\mathbf{F}^{(d)}$ Data from domain d

K hyperparameter, number of Shared Network

D domains, *D* Domain-Specific Network

Backbone Network

Fusion Layer

 $egin{aligned} eta_1^{(d)} &= \sigma(W^{(d)}_{fusion_spec}(f_{domain})) \ eta_2^{(d)} &= \sigma(W^{(d)}_{fusion_shared}(f_{domain})) \end{aligned}$

 $E_{fusion}^{(d)} = concat(eta_1^{(d)}E_{spec}^{(d)} \mid \ eta_1^{(d)}E_{spec}^{(d)} \odot eta_2^{(d)}E_{shared} \mid eta_2^{(d)}E_{shared})$

Domain-Specific Forward Network

$$E = FC_{forward}^{(d)}(E_{fusion}^{(d)})$$

Domain Adaptation

Domain-Specific Batch Normalization (DSBN)

Domain Adaptation

Domain Interest Adaptation Layer

 $lpha^{(d)} = F_{se}(concat(F_{avg}(F_1^{(d)}) \mid \dots \mid F_{avg}(F_N^{(d)}))) \ \hat{F}^{(d)} = lpha^{(d)} \otimes concat(F_1^{(d)} \mid \dots \mid F_N^{(d)})$

 $F_i^{(d)}$ denotes *i*th feature of embedded input collected from domain *d*

 F_{se} denotes a (*FC*, *Relu*, *FC*) block and F_{avg} denotes average pooling operator.

Table of Contents

Shared-specific network paradigm $wL(E^{Merge}, \Theta, \Theta^t, (\Theta^{shared}, \Theta^{specific}))$ **Dynamic weight** $wL(E^{Merge}, \Theta, \Theta^t, \Theta^s)$

Multi-Scenario & Multi-Task $wL(E^{Merge}, \Theta, \Theta^t, \Theta^s, \Theta^T)$

> Why Dynamic?

Input Features

Scenario Sensitive Features

MUSENET

> Target

• To mine and model implicit scenarios

Methods

• Scenario Learning Module to project data samples, and assign scenarios to these data samples

MUSENET Details

Soft Assignment

$$egin{aligned} &\Lambda = \left\{ \mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_K
ight\} \ &Q_s(c|x) = P_\omega(c|x) = rac{\exp(-d(f_\omega(\mathbf{x}), \mathbf{c}))}{\sum_{\mathbf{c}'} \exp(-d(f_\omega(\mathbf{x}), \mathbf{c}'))} \end{aligned}$$

$$\{a_{1,i},a_{2,i},...,a_{k,i}\}$$

Hard Assignment Gumbel-Softmax trick

$$a_{k,i} = rac{\exp((\log \pi_{k,i} + g_{k,i})/ au)}{\sum_{k'=1}^{K} \exp((\log \pi_{k',i} + g_{k',i})/ au)}$$

 \rightarrow

$$\mathbf{x}_{k,i} = rac{\exp(-d(f_{\omega}(\mathbf{x_i}), \mathbf{c_k}))}{\sum_{k'=1}^{K} \exp(-d(f_{\omega}(\mathbf{x_i}), \mathbf{c_{k'}}))}$$

MUSENET Details

Given the ω , the objective is to minimize the distance expectation from each data sample to the corresponding scenario prototypes

Final Prediction

SASS

Motivation

- Lacking of fine-grained and decoupled information transfer controls among multiple scenarios
- Insufficient exploitation of entire space samples
- Item's multi-scenario representation disentanglement problem

Methods

- Multi-Layer Scenario Adaptive Transfer (ML-SAT) module
- Two-stage training process including pretraining and fine-tune

A:Main Feed

B:Immersive Feed C:Homepage Feed

Pre-training Stage and Fine-Tune Stage

(a) Pre-Training Stage of SASS

$$\mathcal{L}_{ij} = -log rac{\exp(sim(e^i_s,e^j_s)/ au)}{\sum_{k=1,k
eq i}^{2N}\exp(sim(e^i_s,e^k_s)/ au)}$$

Multi-Layer Scenario Adaptive Transfer Module

Scenario Modeling

$$a = f(W_a x_a + b_a)$$

Scenario-adaptive gate unit

$$egin{aligned} r_l &= \sigma(W^l_r[g_l, s_{l-1}] + W_{br}a) \ h_l &= tanh(W^l_h[r_l \cdot g_l, s_{l-1}]) \ z_l &= \sigma(W^l_z[g_l, s_{l-1}] + W_{bz}a) \ s_l &= (1-z_l) \cdot s_{l-1} + z_l \cdot h_l \end{aligned}$$

Multi-Layer Scenario Adaptive Transfer Module

Scenario Bias Fusion

$$egin{aligned} e_s &= lpha \cdot s_T + (1-lpha) \cdot a \ lpha &= \sigma(W_0[s_T,a]) \end{aligned}$$

Table of Contents

Shared-specific network paradigm $wL(E^{Merge}, \Theta, \Theta^t, (\Theta^{shared}, \Theta^{specific}))$ **Dynamic weight** $wL(E^{Merge}, \Theta, \Theta^t, \Theta^s)$

Multi-Scenario & Multi-Task $wL(E^{Merge}, \Theta, \Theta^t, \Theta^s, \Theta^T)$

Multi-Scenario & Multi-Task Studies

CityU

HUAWEI

MTMS

> Target

• Develop a unified ranking model for multi-task and multi-scenario problem

Methods

- Independent/non-shared embeddings for each task and scene, new tasks or scenes could be added easily
- A simplified network is chosen beyond the embedding layer, which largely improves the ranking efficiency for online service.

MTMS Details

Independent embeddings for every "task+scenario" Aggregation of different components -> shared modeling Loss function: sum of different tasks, -> performance not be hurt by auxiliary tasks (E.g. CTR)

MTMS Details

First step: embedding update, no shared information modeling

MTMS Details

Second step: network fine tune. Embedding is fixed. DNN has more fields for inputs

➤ Target

• Develop a unified framework that could realize both MSL and MTL requirements

Methods

- Propose AESM², a flexible hierarchical structure where the multi-task layers are stacked over the multi-scenario layers
- General expert selection algorithm

AESM²

HUAWEI

AESM²

Multi-Scenario Layer

(b) Multi-Scenario Layer

Input x, scenario embedding s, Gaussian noise n_j, learnable parameter s_j, m scenarios/gates. For every expert:

$$\mathbf{G} = [\mathbf{g}_1, \cdots, \mathbf{g}_m]$$

 $\mathbf{g}_j = \mathbf{S}_j[\mathbf{x}, \mathbf{s}] + \eta_j$
 $\tilde{\mathbf{G}} = softmax(\mathbf{G})$

Expert selection

$$\mathcal{E}_{sp} = TopK(h_1^p, \cdots, h_n^p)$$

$$h_k^p = -KL(\mathbf{p}_j, \tilde{\mathbf{G}}[k, :])$$

$$\mathcal{E}_{sh} = TopK(h_1^q, \cdots, h_n^q)$$

$$h_k^q = -KL(\mathbf{q}_j, \tilde{\mathbf{G}}[k, :])$$

$$\mathbf{p}_j(e.g., [1, \cdots, 0])$$

$$\mathbf{q}_j = [1/m, \cdots, 1/m]$$

Expert aggregation:

• (k-th expert, j-th scenario)

Specific
$$\hat{\mathbf{g}}_{j}[k] = \begin{cases} \mathbf{g}_{j}[k], & \text{if } k \in \mathcal{E}_{sh} \cup \mathcal{E}_{sp} \\ -\infty, & \text{else} \end{cases}$$

Shared

 $\mathbf{z}_j = ScenarioLayer(\mathbf{x}, \mathbf{s}_j) = MMoE(\mathbf{x}, \hat{\mathbf{g}}_j)$

Multi-Task Layer

Input x, scenario embedding s, task embedding t_k , Gaussian noise n_i , learnable parameter T_k , the gating scalar g_k for k-th task:

 $\mathbf{g}_k = \mathbf{T}_k[\mathbf{x}, \mathbf{s}, \mathbf{t}_k] + \boldsymbol{\eta}_k$

$$\mathbf{z}_k = TaskLayer(\mathbf{z}_j, \mathbf{t}_k) = MMoE(\mathbf{z}_j, \hat{\mathbf{g}}_k)$$

> Output layer

 $\hat{y}_k = \sigma(MLP(\mathbf{z}_k))$

PEPNet

Motivation

- The imperfectly double seesaw phenomenon
- More accurate personalization estimates can alleviate the imperfectly double seesaw problem

> Target

- Jointly model multi-domain and multi-task
- an efficient, low-cost deployment and plug-andplay method that can be injected in any network.

PEPNet Details

HUAWE

PEPNet Details

EPNet

 $\mathbf{E} = E(\mathcal{F}_S) \oplus E(\mathcal{F}_D)$

Embeddings of sparse features and dense features

$$\delta_{domain} = \mathrm{U}_{ep}(E(\mathcal{F}_d) \oplus (\oslash(\mathbf{E})))$$

$$\mathbf{O}_{ep} = \delta_{domain} \otimes \mathbf{E}$$

PEPNet Details

PPNet

$$egin{aligned} 0_{prior} &= E(uf) \oplus E(if) \oplus E(af) \ \delta_{task} &= \mathbf{U}_{pp}(\mathbf{O}_{prior} \oplus (\oslash(\mathbf{O}_{ep}))) \end{aligned}$$

$$egin{aligned} \mathbf{O}_{pp}^{(l)} &= oldsymbol{\delta}_{toldsymbol{ask}}^{(l)} \otimes \mathbf{H}^{(l)}, \ \mathbf{H}^{(l+1)} &= f(\mathbf{O}_{pp}^{(l)}\mathbf{W}^{(l)} + b^{(l)}), l \in \{1,...,L\} \end{aligned}$$

M2M

Motivation

- Less attention has been drawn to advertisers
- Major e-commerce platforms provide multiple marketing scenarios.

Methods

- Meta unit
- Meta attention module
- Meta tower module

HUAWE

Backbone Network Expert View Representation $\mathrm{E_i} = f_{MLP}(\mathbf{F}), orall i \in {1, 2, ..., k}$ *F* is the output of transformer layer Task View Representation

Scenario Knowledge Representation

$$ilde{\mathrm{S}} = f_{MLP}(\mathrm{S},\Lambda)$$

Meta Unit

$\mathbf{h}_{output} = \mathbf{h}^{K} = Meta(\mathbf{h}_{input})$

Meta Attention Module

 $a_{t_i} = \mathrm{v}^T Meta_t([\mathrm{E_i} \parallel \mathrm{T}_t])$

$$lpha_{t_i} = rac{exp(a_{t_i})}{\sum_{i=1}^M exp(a_{t_i})}, \qquad \mathrm{R}_t = \sum_{i=1}^k lpha_{t_i} \mathrm{E}_i,$$

Meta Tower Module

 $\mathbf{L}_t^{(0)} = \mathbf{R}_t$

 $\mathrm{L}_{t}^{(j)} = \sigma(Meta^{(j-1)}(\mathrm{L}_{t}^{(j-1)}) + \mathrm{L}_{t}^{(j-1)}), orall j \in 1, 2, .., L$

Multi-Scenario Recommendation

Model	Setting	Methods
STAR	Multi-Scenario	Shared-Specific
SAR-Net	Multi-Scenario	Shared-Specific; Experts
ADI	Multi-Scenario	Shared-Specific
MUSENET	Multi-Scenario	Dynamic Weight
SASS	Multi-Scenario	Dynamic Weight
MTMS	Multi-Scenario & Multi-Task	Two-stage fine-tune
PEPNet	Multi-Scenario & Multi-Task	Dynamic Weight
M2M	Multi-Scenario & Multi-Task	Dynamic Weight; Experts

Multi-Scenario Recommendation

Торіс	Challenge & future direction
LLM-based multi-scenario & multi-task modeling	 Design specific prompts for each scenario or tasks Take the texts to bridge different scenarios or tasks
Robustness	• Scenarios with different available information (multimodal)
Privacy	 Data need to be shared between different scenarios to build a unified model. Methods to protect user privacy should be proposed.
Fairness and Bias	The issue of fairness in recommendation scenarios.

Joint Modeling in Recommendations

Coffee Break

Huawei Noah's Ark Lab

IJCAI23 Huawei Noah's Ark Lab Chat Group

Citvl

Xiangyu Zhao

City University of Hong Kong Agenda

More Joint-Learning Methods

More Joint-Learning Methods

- Multi-modal recommendation
- Multi-behavior recommendation

- Multi-interest recommendation Large language model-based recommendation

Multimodal Recommender Systems (MRS)

CityU

HUAWEI

Multimodal Recommender Systems (MRS)

- Using various types of information generated by multimedia applications and services to enhance recommender systems' performance
- >Making use of multimodal features simultaneously, such as image, audio, and text
- ≻Challenge:
 - Acquisition of different representations -> Modality Encoder
 - Fusion of different modality features -> Feature Interaction
 - Acquisition of representations under the data-sparse condition -> Feature Enhancement
 - Effectiveness and efficiency improvement -> Model Optimization

Modality Encoder

Encoding different multimodal features

≻Commonly used:

- Visual: CNN-based, ViT / Transformer-based
- Textual: Word2Vec, CNN-based, RNN-based, Transformer-based
- Others: E.g., converting acoustic and video data into text or visual information

Modality	Category
	CNN
Visual Encoder	ResNet
	Transformer
Textual Encoder	Word2vec
	RNN
	CNN
	Sentence-transformer
	Bert
Other Modality Encoder	Published Feature

Example: Multimodal encoder in VLSNR: Clip+ViT

MultiModal Encoder

VLSNR: Vision-Linguistics Coordination Time Sequence-aware News Recommendation. arXiv preprint 2022.

Feature Interaction

Connecting different modalities to enhance the model performance
Three mainly used types: Bridge, Fusion, and Filtration

These methods are combined and used together in some research

HUAWE

Feature Interaction: Bridge

The construction of a multimodal information transfer channel

Capturing the inter-relationship between users and items

Form: User-item Graph, Item-item Graph, Knowledge Graph

Feature Interaction: Fusion

>Aiming at combining various preferences in modalities

Concerning more about the multimodal intrarelationships of items

> The attention mechanism is the most widely used feature fusion method

visual vector 🔘 text vector	id vector
	Fused Feature
	Fusion Method
	Unimodal Feature
(b) Fusion	

Example: Noninvasive feature fusion in NOVA

Feature Interaction: Filtration

Aiming at filtering out noisy data (data that is unrelated to user preferences)
 This step could be done for modality features, or the feature interactions

Example: interaction denoising with an active attention mechanism in PMGCRN

Preference-corrected multimodal graph convolutional recommendation network. Applied Intelligence 2023.

Feature Enhancement

Different modalities of the same object have unique and common semantic information

- The recommendation performance and generalization of MRS can be significantly improved if the unique and common characteristics can be distinguished
- Methods: Disentangled Representation Learning, Contrastive Learning

Disentangled Representation Learning

MDR: multimodal disentangled recommendation

-> fuse representations that have the similar meaning

Example: MDR for multimodal disentangled recommendation

Contrastive Learning

GHMFC: contrastive learning modules with two loss functions (text2image and image2text)
 -> Learning similar semantic knowledge

Multimodal entity linking with gated hierarchical fusion and contrastive training. SIGIR 2022.

Model Optimization

The computational requirements are greatly increased with multimodal information
 Training strategies: End-to-end training (with pre-trained encoder), Two-step training

Multi-Behavior Modeling

CityU

HUAWEI

Multi-Behavior Modeling

>Understanding behavior patterns and behavior correlations at a fine-grained granularity

Explicitly considering the different behavior types as they convey subtle differences in user interest modeling

Behavior Type Definition

>An open question

- ➢ Roughly three categories:
 - Macro behaviors: interaction with different items
 - E.g. user 1 interact with item 1, then item 22, then item 81.
 - Micro behaviors: actions taken on this item
 - E.g. click, add to cart,...
 - Behaviors from different domains or scenarios
 - E.g. Same behavior in two domains => different behaviors (highlight the distinctions)

Browse

Tag-as-favorite

Add-to-cart

Purchase

Macro behaviors:

> Behaviors from different domains or scenarios

E.g. Same behavior in two domains => different behaviors (highlight the distinctions)

Micro behaviors: A new perspective in e-commerce recommender systems. WSDM 2018. Self-Supervised Learning on Users' Spontaneous Behaviors for Multi-Scenario Ranking in E-commerce. CIKM 2021.

Modeling the complicated cross-scenario behavior dependencies

Example: pre-training and fine-tuning of ZEUS

Modeling the complicated cross-type behavior dependencies

Example: MB-GMN

Multi-Interest Recommendation

CityU

HUAWEI

Multi-Interest Recommendation

- Information cocoon: When a user clicks and buys an item, the platform will only recommend items that are very similar
- Multi-Interest Recommendation: Improving the diversity and discovery of recommendations to better meet user interests

MIND

 $b_{ij} = \overrightarrow{\boldsymbol{u}}_{i}^{T} \mathbf{S} \overrightarrow{\boldsymbol{e}}_{i}$

Mining interests: Interest Capsules (clustering)

➢ for item i and interest j:

Multi-interest network with dynamic routing for recommendation at Tmall. CIKM 2019.

ComiRec

Mining interests: Interest Capsules (clustering)

➢ Balancing the accuracy and diversity of the recommendation

Sparse interests: activating different concepts for different input
 Making prediction based on the user intention and activated concepts

Sparse-interest network for sequential recommendation. WSDM 2021.
LLM-based Recommendation

CityU

HUAWEI

LLM-based Recommendation

Large language model-based recommendation

≻Two methods:

- Fine-tuning
- LLM as a submodule

Fine-Tuning

➢P5: a unified recommendation model with pre-trained LLM model T5

Fine-Tuning

➢P5: a unified recommendation model with pre-trained LLM model T5

➢ Fine-tuning with five commonly used tasks

LLM As a Submodule

KAR: using LLM as a submodule to obtain more general knowledge
Knowledge Encoder: NLP-based encoder. E.g. BERT

Towards Open-World Recommendation with Knowledge Augmentation from Large Language Models. arxiv 2023.

More extensive joint modeling (Multi Behavior/Interest/Modal, LLM)

- Fusing heterogeneous information from different data modalities
- Acquiring multi-aspect user preferences from different type of **behaviors or interests**
- Introducing open-world knowledge from large language models

Models	Type(or other dimension)	Models	Type(or other dimension
MB-GMN	Multi-Behavior	VLSNR	Multi-Modal
RIB	Multi-Behavior	MICRO	Multi-Modal
ZEUS	Multi-Behavior	NOVA	Multi-Modal
MIND	Multi-Interest	PMGCRN	Multi-Modal
ComiRec	Multi-Interest	MDR	Multi-Modal
SINE	Multi-Interest	GHMFC	Multi-Modal
P5	LLM-Based		
KAR	LLM-Based		150

Future Directions

> More extensive joint modeling

- Joint modeling with all the above methods
- A more comprehensive approach to realize joint modeling with LLM

Agenda

Conclusion

Utilizing diverse user feedback signals from different tasks

- Extracting commonalities and diversities of user preferences from different scenarios
- Fusing heterogeneous information from different data modalities
- Acquiring multi-aspect user preferences from different type of **behaviors or interests**
- Introducing open-world knowledge from large language models

Multi-Task Recommendation

- Task relation: Parallel, Cascaded, Auxiliary with Main
- Methodology:

Parameter Sharing, Optimization, Training Mechanism

Multi-Scenario Recommendation

- From the perspective of methods, there are mainly two categories: shared-specific network paradigm, and dynamic weight paradigm.
- Overall, most the work focuses on using one unified model serving multiple scenarios and multiple tasks simultaneously based on knowledge transfer between scenarios or tasks.

156

> More extensive joint modeling (Multi Behavior/Interest/Modal)

- Multi Behavior/Interest/Modal modeling are joint learning methods focusing on fine-grained modeling of different user/model's aspects
- LLM, as a new effective method for recommendation, could further be combined with recommendation models to jointly learn more universal knowledge to obtain a better performance

Future Directions

Multi-Task Recommendation

- Negative transfer
- Task-specific biases

> Multi-Scenario Recommendation

- Robustness
- Privacy

More extensive joint modeling

• A more comprehensive approach to realize joint modeling with LLM

Ecosystem

- Joint modeling with all the above methods
- More convenient for other researchers to contribute to this field

We are hiring !

Huawei Noah's Ark Lab

Xiangyu Zhao

City University of Hong Kong

IJCAI23 Huawei Noah's Ark Lab Chat Group

Multi-Task Deep Recommendation Systems: A Survey. https://arxiv.org/abs/2302.03525