Whole-Chain Recommendations

Xiangyu Zhao Long Xia Lixin Zou Hui Liu Dawei Yin Jiliang Tang

1: Michigan State University 2: York University 3: Baidu Inc
Background

- Users sequentially interact with multiple scenarios
 - Each scenario has different objective
Motivation

- Optimizing each recommender agent for each scenario
 - Ignoring sequential dependency
 - Missing information
 - Sub-optimal overall objective
Whole-Chain Recommendation

- **Goal**
 - Jointly optimizing multiple recommendation strategies
 - Maximizing the overall performance of the whole session

- **Advantages**
 - Agents are sequentially activated
 - Agents share the same memory
 - Agents work collaboratively

- **Actor-Critic**
 - Actor: recommender agent in one scenario
 - Critic: controlling actors
Individual Actor

- **Goal**
 1. Capturing users’ preference from their browsing history (state)
 2. Generating recommendations (action)

- **Encoder-Decoder**
Global Critic (Q-function)

- **Goal**
 - Controlling all actors to work collaboratively → optimize global performance

- **Challenge**
 - How to capture user’s attention pattern in different scenarios?

- **Solution**
 - Separate attention mechanisms
Data Science and Engineering Lab

Optimization

Entrance Page

Item Detail Page

Actor

skip

click

Entrance Page

§ 1st row: skip behavior
2nd row: click behavior
3rd row: leave behavior

\[y_t = \begin{bmatrix} p_m(s_t, a_t) \cdot Q_m(s_{t+1}, \pi_m(s_{t+1})) + p_c(s_t, a_t) \cdot (r_t + \gamma Q_c(s_{t+1}, \pi_c(s_{t+1})) \cdot \gamma Q_m(s_{t+1}, \pi_m(s_{t+1})) \cdot r_t) m \end{bmatrix} \]
Why Model-based RL?

- Advantages
 - Reducing training data amount requirement
 - Performing accurate optimization of the Q-function

\[
y_t = \left[p^s_m(s_t, a_t) \cdot \gamma Q_{\mu'}(s_{t+1}, \pi'_m(s_{t+1})) \right.
+ p^c_m(s_t, a_t) \cdot (r_t + \gamma Q_{\mu'}(s_{t+1}, \pi'_d(s_{t+1})))
+ p^l_m(s_t, a_t) \cdot r_t \right] \mathbf{1}_m
+ \left[p^c_d(s_t, a_t) \cdot (r_t + \gamma Q_{\mu'}(s_{t+1}, \pi'_d(s_{t+1}))) \right.
+ p^s_d(s_t, a_t) \cdot \gamma Q_{\mu'}(s_{t+1}, \pi'_m(s_{t+1}))
+ p^l_d(s_t, a_t) \cdot r_t \right] \mathbf{1}_d
\]
Experiment on JD.com Data

Baselines
- Wide&Deep
- DeepFM
- GRU4Rec
- DDPG
- MA-RDPG

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>Metrics</th>
<th>Algorithms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>W&D</td>
</tr>
<tr>
<td>Entrance Page</td>
<td>MAP</td>
<td>0.106</td>
</tr>
<tr>
<td></td>
<td>improv.(%)</td>
<td>18.87</td>
</tr>
<tr>
<td></td>
<td>p-value</td>
<td>0.000</td>
</tr>
<tr>
<td>Entrance Page</td>
<td>NDCG@40</td>
<td>0.189</td>
</tr>
<tr>
<td></td>
<td>improv.(%)</td>
<td>19.05</td>
</tr>
<tr>
<td></td>
<td>p-value</td>
<td>0.000</td>
</tr>
<tr>
<td>Item Detail Page</td>
<td>MAP</td>
<td>0.081</td>
</tr>
<tr>
<td></td>
<td>improv.(%)</td>
<td>18.52</td>
</tr>
<tr>
<td></td>
<td>p-value</td>
<td>0.000</td>
</tr>
<tr>
<td>Item Detail Page</td>
<td>NDCG@40</td>
<td>0.166</td>
</tr>
<tr>
<td></td>
<td>improv.(%)</td>
<td>18.67</td>
</tr>
<tr>
<td></td>
<td>p-value</td>
<td>0.000</td>
</tr>
</tbody>
</table>
Experiment on Simulated Online Environment

- **Baselines**
 - Wide&Deep
 - DeepFM
 - GRU4Rec
 - DDPG
 - MA-RDPG

- **Variants**
 - DC-o: one-agent
 - DC-f: model-free
Thanks

zhaoxi35@msu.edu