UserSim: User Simulation via Supervised Generative
Adversarial Network

Xiangyu Zhao'?, Long Xia3, Lixin Zou*, Hui Liu!, Dawei Yin?, Jiliang Tang1
Michigan State University, 2City University of Hong Kong, 3York University, *Baidu
{zhaoxi35,liuhui7,tangjili}@msu.edu,{long.phil.xia, zoulixin15}@gmail.com,yindawei@acm.org

ABSTRACT

With the recent advances in Reinforcement Learning (RL), there
have been tremendous interests in employing RL for recommender
systems. However, directly training and evaluating a new RL-based
recommendation algorithm needs to collect users’ real-time feed-
back in the real system, which is time/effort consuming and could
negatively impact users’ experiences. Thus, it calls for a user simu-
lator that can mimic real users’ behaviors to pre-train and evaluate
new recommendation algorithms. Simulating users’ behaviors in
a dynamic system faces immense challenges — (i) the underlying
item distribution is complex, and (ii) historical logs for each user
are limited. In this paper, we develop a user simulator based on a
Generative Adversarial Network (GAN). To be specific, the genera-
tor captures the underlying distribution of users’ historical logs and
generates realistic logs that can be considered as augmentations
of real logs; while the discriminator not only distinguishes real
and fake logs but also predicts users’ behaviors. The experimental
results based on benchmark datasets demonstrate the effectiveness
of the proposed simulator.

KEYWORDS

User Simulation, Generative Adversarial Network, Reinforcement
Learning, Recommender System

ACM Reference Format:

Xiangyu Zhao2, Long Xia3, Lixin Zou*, Hui Liu!, Dawei Yin?, Jiliang
Tang!. 2021. UserSim: User Simulation via Supervised Generative Adver-
sarial Network. In Proceedings of the Web Conference 2021 (WWW °21),
April 19-23, 2021, Ljubljana, Slovenia. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3442381.3450125

1 INTRODUCTION

With the recent tremendous development in Reinforcement Learn-
ing (RL), there have been increasing interests in adapting RL for
recommendations [5]. RL-based recommender systems treat the
recommendation procedures as sequential interactions between
users and a recommender agent (RA) as shown in Figure 1. In
each iteration, the recommender system suggests a set of items
to the user; then, the user browses the recommended items and
provides her/his real-time feedback; next, the system will update its
recommendation strategy according to user’s feedback. RL-based

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.

WWW °21, April 19-23, 2021, Ljubljana, Slovenia

© 2021 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.

ACM ISBN 978-1-4503-8312-7/21/04.

https://doi.org/10.1145/3442381.3450125

3582

©

e R T @
oy @ 1T

feedback @, Eﬂ ME, %
£ <—|
User

Figure 1: An example of system-user interactions.

recommender systems aim to automatically learn an optimal rec-
ommendation strategy (policy) that maximizes cumulative rewards
from users without any specific instructions. They can achieve two
key advantages: (i) the recommender agent can learn their recom-
mendation strategies based on users’ real-time feedback during the
user-agent interactions continuously; and (ii) the optimal strategy
targets at maximizing the long-term reward from users (e.g., the
overall revenue of a recommendation session). Given the advan-
tages of reinforcement learning, very recently, it allures tremendous
interest in developing RL-based recommender systems. [9, 43, 48].
RL-based recommendation algorithms are desired to be trained
and evaluated based on users’ real-time feedback (reward function).
The most practical and precise way is online A/B test [20, 39], where
a new recommendation algorithm is trained based on the feedback
from real users and the performance is compared against that of the
previous algorithm via randomized experiments. However, online
A/B tests are inefficient and expensive: (i) online A/B tests usually
take several weeks to collect sufficient data for the sake of statisti-
cal sufficiency, and (ii) numerous engineering efforts are typically
required to deploy the new algorithm in the real system [14, 22, 38].
Furthermore, online A/B tests often lead to bad user experience in
the initial stage when the new recommendation algorithms have
not been well trained [21]. These reasons prevent us from quickly
training and testing new RL-based recommendation algorithms.
The common practice to handle these challenges in the RL com-
munity is to build a simulator to approximate the environment
(e.g., OpenAI Gym for video games), and then use it to train and
evaluate the RL algorithms [12]. Thus, following the best routine,
we aim to build a user simulator based on users’ historical logs
in this work, which can be utilized to pre-train and evaluate new
recommendation algorithms before launching them online.
However, simulating users’ behaviors in a dynamic recommen-
dation environment is very challenging. First, the underlying dis-
tribution of recommended item sequences is extremely complex in

https://doi.org/10.1145/3442381.3450125
https://doi.org/10.1145/3442381.3450125

WWW °21, April 19-23, 2021, Ljubljana, Slovenia

historical logs since there are millions of items in practical recom-
mender systems. Second, to learn a robust simulator, it typically
requires large-scale historical logs as training data from each user.
Though massive historical logs are often available, data available
to each user is rather limited. Recent efforts have demonstrated
that Generative Adversarial Network (GAN) and its variants are
able to generate fake but realistic images [15, 16], which implies
their potential in modeling complex distributions. Furthermore,
the generated images can be considered as augmentations of real
images to enlarge the data space. Driven by these advantages, we
propose to build a GAN-based user simulator (UserSim) for RL-
based recommenders, which can capture the complex distribution
of users’ browsing logs and generate realistic logs to enrich the
training dataset. We summarize our major contributions as follows:
(i) We introduce a principled approach to capture the underlying
distribution of recommended item sequences in historical logs, and
generate realistic item sequences; (ii) We propose a user behavior
simulator UserSim, which can be utilized to simulate environments
with limited training data to pre-train and evaluate RL based rec-
ommender systems; and (iii) We conduct experiments based on
real-world data to demonstrate the effectiveness of the proposed
simulator and validate the contributions of its components.

2 THE PROPOSED SIMULATOR

This section will propose a simulator framework that imitates users’
feedback (behavior) on a recommended item according to the user’s
current preference learned from her browsing history.

2.1 Problem Statement

RL-based recommender systems treat the recommendation task as
sequential interactions between a recommender system (agent) and
users (environment &), and use a Markov Decision Process (MDP)
to model them, which consist of a sequence of states, actions and
rewards: (i) We define the state s = {i1,--- ,iN} as a sequence of
N items that a user browsed and user’s corresponding feedback
for each item. The items in s are chronologically sorted; (ii) An
action a from the recommender system perspective is defined as
recommending a set of items to the user. Without loss of generality,
we suppose that each time the recommender system suggests one
item to the user, but it is straightforward to extend this setting to
recommending more items; (iii) When the system takes an action a
based on the state s, the user will browse the recommended item
and provide her feedback on the item, such as to skip, click, or
purchase the item. The recommender system will then receive a
reward r(s, a) solely according to the type of feedback.

With the aforementioned definitions and notations, the goal
of a simulator can be formally defined as follows: Given a state-
action pair (s, a), the goal is to imitate user’s feedback (behavior) on
a recommended item according to user’s preference learned from the
user’s browsing history.

2.2 The Generator Architecture

The goal of the generator is to learn the data distribution and then
generate indistinguishable logs (action) based on users’ browsing
history (state), i.e., to imitate the recommendation policy of the
recommender system that generates the historical logs. Figure 2

3583

Xiangyu Zhao et al.

Decoder

Encoder
Output Layer

Hi pi -
PET |_A_, | el
_) FC]#FCQ—>- ()

I INT -
"T“ITI "T“ TI |
er fi en fn I . I ._>

real action a

FC Layers

Figure 2: The generator with Encoder-Decoder architecture.

illustrates the generator with the Encoder-Decoder architecture.
The Encoder component aims to learn user’s preference according
to the items browsed by the user and the user’s feedback. The input
is the state s = {i1,-- - ,in} that is observed in the historical logs,
i.e., the sequence of N items that a user browsed and user’s corre-
sponding feedback for each item. The output is a low-dimensional
representation of user’s current preference, referred to as p£. Each
item i, € s involves two types of information: i, = (en, fn), where
en is a low-dimensional and dense item-embedding of the recom-
mended item, and f}, is an embedding to denote user’s feedback on
the recommended item!. The intuition of selecting these two types
of information is that, we not only want to learn the information of
each item in the sequence, but also want to capture user’s interests
(feedback) on each item. Then, we concatenate e, and fy, and get
a low-dimensional and dense vector: I;, = concat(ey, fn)-

We introduce a Recurrent Neural Network (RNN) with Gated
Recurrent Units (GRU) to capture the sequential patterns of items in
the logs. We consider the RNN’s final hidden state hp; as the output
of Encoder component, i.e., the lower dimensional representation
of user’s current preference: p£ = hy.

The goal of the Decoder component is to predict the item that
will be recommended according to the user’s current preference.
Therefore, the input is user’s preference representation pZ, while
the output is the item-embedding of the item that is predicted to ap-
pear at next position in the log, referred to as Gy(s). We leverage a
MLP component with several fully-connected layers as the Decoder
to directly transform pF to Gg(s). So far, we have delineated the
architecture of the Generator, which aims to imitate the recommen-
dation policy of the existing recommender system, and generate
realistic logs to augment the historical data. In addition, we add a
supervised component to encourage the generator to yield items
that are close to the ground truth items, which will be discussed in
Section 2.4. Next, we will discuss the architecture of discriminator.

2.3 The Discriminator Architecture

The discriminator aims to not only distinguish real historical logs
and generated logs, but also predict the class of user’s feedback
on a recommended item according to her browsing history. Thus
we consider the problem as a classification problem with 2 X K
classes, i.e., K classes of real feedback for the recommended items

These embeddings are jointly trained with neural networks in an end-to-end manner.

UserSim: User Simulation via Supervised Generative
Adversarial Network

— B @

softmax I
T
Fl ~ = =
Q- O L]
ground truth feedback FC,

PD
-

i o
NIANALN RIANDN]
(. (I HIilN

er fi EN fn real a or fake Gy(s)

Figure 3: The discriminator architecture.

observed from historical logs, and K classes of fake feedback for
the recommended items yielded by the generator.

Figure 3 illustrates the architecture of the discriminator. Similar
with the generator, we introduce an RNN with GRU to capture
user’s dynamic preference. Note that the architecture is the same as
the RNN in generator, but they have separate parameters. The input
of the RNN is the state s = {i1,- - - ,in} observed in the historical
logs, where i, = (ep, fn), and the output is the dense representation
of the user’s current preference, referred to as pD . Meanwhile, we
feed the item-embedding of the recommended item (real a or fake
Gy(s)) into fully-connected layers, which encode the recommended
items to low-dimensional representations, referred to as eP. Then
we concatenate p” and eP, and feed the concatenation (p?, eP)
into fully-connected layers, whose goals are (1) to judge whether
the recommended items are real or fake, and (2) to predict users’
feedback on these items. Therefore, the final fully-connected layer
outputs a 2 X K dimensional vector of logits, which represent K
classes of real feedback and K classes of fake feedback respectively:

output = [Ig1,- - . Irg. IF1, -+ IFK] (1)

where we include K classes of fake feedback in output layer rather
than only one fake class, since fine-grained distinction on fake
samples can increase the power of discriminator (more details in
following subsections). These logits can be transformed to class
probabilities through a softmax layer, and the probability corre-
sponding to the j* h class is:
lils,a) = —exp(lj)
pmodel(j|) Ziill(exp(lk)
The objective function is based on these class probabilities. In addi-
tion, a supervised component is introduced to enhance the user’s
feedback prediction and more details about this component will be
discussed in Section 2.4.

@)

2.4 The Objective Function

In this subsection, we will introduce the objective functions of
the proposed simulator. The discriminator has two goals: (1) dis-
tinguishing real-world historical logs and generated logs, and (2)
predicting the class of user’s feedback on a recommended item

3584

WWW ’21, April 19-23, 2021, Ljubljana, Slovenia

according to the browsing history. The first goal corresponds to an
unsupervised problem just like standard GAN that distinguishes
real and fake images, while the second goal is a supervised problem
that minimizes the class difference between users’ ground truth
feedback and the predicted feedback. Therefore, the loss function
Lp of discriminator consists of two components.

For the unsupervised component that distinguishes real-world
historical logs and generated logs, we need to calculate the proba-
bility that a state-action pair is real or fake. From Eq (2), we know
the probability that a state-action pair observed from historical logs
is classified as real, referred to as D¢ (s, a), is the summation of the
probabilities of K real feedback:

K
Dy(s,a) = meodel(lkls’ a) ®3)
k=1
while the probability of a fake state-action pair where Ggy(s) action
is produced by the generator, say Dy(s, Gg(s)), is the summation
of the probabilities of K fake feedback:

2XK
Dy(s,Go() = D Pmoder(lls, Go(s)) ()
k=K+1
Then, the unsupervised component of the loss function Lp is de-
fined as follows:

LY = = {Es,a~paara 10g Dy (s, a)

+ ESNPdam log D¢($, Gy(s))}
where both s and a are sampled from historical logs distribution
Pdatq in the first term; in the second term, only s is sampled from
historical logs distribution pg,;,, while the action Gy(s) is yielded
by generator policy Gy.

The supervised component aims to predict the class of user’s
feedback, which is formulated as a supervised problem to mini-
mize the class difference (i.e. the cross-entropy loss) between users’
ground truth feedback and the predicted feedback. Thus it also has
two terms — the first term is the cross-entropy loss between ground
truth class I} and predicted class for a real state-action pair sampled
from real historical data distribution pg,;,; while the second term
is the cross-entropy loss between ground truth class /. and the
predicted class for a fake state-action pair, where the action Gy(s)
is yielded by the generator. Thus, the supervised component of the
loss function Lp is defined as follows:

®)

L? = ~{Bs,a,r~paara 108 Pmodel Uk Is. a. k<K)]
+A- Es’r"'Pdata [logpmodel(lk s, Gg(s), K<k<2K}

where A controls the contribution of the second term. The first
term is a standard cross entropy loss of a supervised problem. The
intuition we introduce the second term of Eq (6) is — in order to
tackle the data limitation challenge mentioned in Section 1, we
consider fake state-action pairs as augmentations of real state-
action pairs. Then fine-grained distinction on fake state-action
pairs will increase the power of discriminator, which also in turn
forces the generator to output more indistinguishable actions. In
other words, user will provide the same feedback if the generated
item is sufficiently similar to the real one. The overall loss function
of the discriminator Lp is defined as follows:

Lp =Ly """ +a-L}* ()

WWW ’21, April 19-23, 2021, Ljubljana, Slovenia

Algorithm 1 Training Algorithm for the Simulator.

1: Initialize the generator Gy and discriminator Dy with random
weights 6 and ¢

2: Sample a pre-training dataset of s,a ~ P44

3: Pre-train Gy by minimizing Lz;up in Eq (9)

4 Generate fake-actions Gy(s) ~ Gy for training D

5: Pre-train Dy by minimizing L;Jp in Eq (6)

6: repeat

7. for d-steps do

8 Sample minibatch of s,a ~ pgata

9 Use current Gy to generate minibatch of Gg(s) ~ Gg

10: Update the Dy by minimizing Lp in Eq (7)

11: end for

122 for g-steps do

13: Sample minibatch of s,a ~ pg,:a

14: Update the Gy by minimizing L in Eq (10)

15: end for

16: until simulator converges

where parameter « is introduced to control the contribution of the
supervised component.

The target of the generator is to output realistic recommended
items Gg(s) that can fool the discriminator, which tackles the com-
plex data distribution problem as mentioned in Section 1. To achieve
this goal, we design two components for the loss function L of the
generator. The first component aims to maximize Lgnsup in Eq (5)
with respect to Gy. In other words, the first component minimizes
that probabilities that fake state-action pairs are classified as fake,
thus we have:

L& P = Esxpyaallog Dy(s, Go(s))] ®)
where s is sampled from real historical logs distribution pg,;, and
the action Gy(s) is yielded by generator policy Gy. Inspired by a
supervised version of GAN [23], we introduce a supervised loss
Lscup as the second component of Lg, which is the ¢, distance
between the ground truth item a and the generated item Gy(s):

LGP = Bs.a~paaralla — Go()l3)

where s and a are sampled from historical logs distribution pg,;4-
This supervised component encourages the generator to yield items
that are close to the ground truth items. The overall loss function
of the generator L is defined as follows:

unsu su
Lo=Lg""" +p- L7 (10)

where f controls the contribution of the second component.

We detail our simulator training algorithm in Algorithm 1. At
the beginning of the training stage, we use standard supervised
methods to pre-train the generator (line 3) and discriminator (line 5).
After the pre-training stage, discriminator (lines 7-11) and generator
(lines 12-15) are trained alternatively. For training the discriminator,
state s and real action a are sampled from real historical logs, while
fake actions Gy(s) are generated through the generator. To keep
balance in each d-step, we generate fake actions Gg(s) with the
same number of real actions a.

3585

Xiangyu Zhao et al.

Table 1: Statistics of the datasets.

‘ Dataset ‘ user (session) ‘ item

‘ JD.com ‘

‘ interaction ‘ ave. length ‘

283,228 | 1,355,255 | 97,713,660 | 345 |

3 EXPERIMENTS

In this section, we conduct extensive experiments to evaluate the
effectiveness of the proposed simulator on real-world datasets.

3.1 Experimental Settings

We evaluate our method on public JD.com dataset?. The statistics are
shown in Table 1. We consider the whole sequence of item-feedback
pairs of each user as a session, and consider click as positive and
skip as negative. For each session, we use first N = 20 items and
corresponding feedback as the initial state, the N + 1¢ h item as the
first action, then we could collect a sequence of (state,action,reward)
tuples following the MDP defined in Section 2.1. We collect the last
30% (state,action,reward) tuples from each session as the test set,
while using the pervious 70% tuples as the training/validation set.

In this paper, we leverage N = 20 items that a user browsed
and user’s corresponding feedback for each item as state s. The
dimension of the item-embedding ey, is |E| = 35, and the dimension
of feedback-embedding f;, is |F| = 15. The output of discriminator
isa4(i.e.,K = 2) dimensional vector of logits, and each logit rep-
resents real-positive, real-negative, fake-positive and fake-negative
respectively:

output = [lyp, lrn, lrp, lrnl (11)

where real denotes that the recommended item is observed from
historical logs; fake denotes that the recommended item is yielded
by the generator; positive denotes the positive feedback such as
a user clicks/purchases the recommended item; and negative de-
notes the negative feedback such as a user skips the recommended
item. Note that though we only simulate two types of behaviors of
users (i.e., positive and negative), it is straightforward to extend the
simulators with more types of behaviors (e.g., purchase and leave).
AdamOptimizer is used for optimization, and the learning rate for
both Generator and Discriminator is 0.001, and batch-size is 500.
The hidden size of RNN is 128. For the hyper-parameters of we use
in the proposed framework such as N = 20, A = 0.3, « = 0.7 and
B = 0.7, we select them via cross-validation. Correspondingly, we
also do parameter-tuning for baselines for a fair comparison.

In the test stage, given a state-action pair, the simulator will
predict the classes of user’s feedback for the action (recommended
item), and then compare the prediction with ground truth feedback
observed from the historical log. For this classification task, we
select the commonly used FI-score [26] as the metric, which is a
measure that combines precision and recall, namely the harmonic
mean of precision and recall. Moreover, we leverage pp,ode1(Irpls, a)
(i.e. the probability that user will provide positive feedback to a
real recommended item) as the score, and use AUC (Area under the
ROC Curve) [8] as the metric to evaluate the performance.

Zhttps://datascience.jd.com/page/opendataset.html

UserSim: User Simulation via Supervised Generative
Adversarial Network

(@) F1 (b) AUC
0.250 0.70

0.225

PHE

0.200

0.175

0.150-

Figure 4: The results of overall performance comparison.

3.2 Overall Performance

We compare the proposed model with state-of-the-art baseline
methods: LR [24], UserSim-d, RecSim [19], RecoGym [28], VT
(Virtual-taobao) [31], GAN-PW [6] and IRecGAN [1]. UserSim-d
has a similar architecture with the proposed discriminator. The
differences are: we feed real recommended items as input action
rather than both real and fake items; and in output layer, we predict
the class of user’s feedback to this real item without considering
the fake feedback.

The overall performances of UserSim (discriminator) and base-
lines are shown in Figure 4. We make the following observations:
(1) UserSim-d and RecSim outperform LR, since LR neglects the
temporal sequence within users’ browsing history, while UserSim-
d and RecSim can capture the temporal patterns within the item
sequences and users’ feedback for each item. This result demon-
strates that it is important to capture the sequential patterns of
users’ browsing history when learning users’ preferences. (2) Rec-
oGym achieves worse performance than VT and UserSim, since
RecoGym is a bandit-based model that does not allow user state
transitions. Furthermore, VT and UserSim are GAN-based models
that are efficient at capturing the underlying distribution of item
sequences. (3) UserSim outperforms UserSim-d, which shares a
similar architecture with the proposed discriminator, but lacks the
generator component. This observation validates that the gener-
ated logs can actually lead to improvements on feedback predic-
tions. (4) UserSim performs better than VT, because VT is built
upon two independent GANSs trained separately, while UserSim
jointly learns the sequence generation and user feedback prediction
into one unified GAN framework. Also, UserSim takes advantage
of both the unsupervised and supervised components, while VT
consists of only unsupervised ones. (5) UserSim gets better than
performance GAN-PW, the reasons involve: (i) UserSim leverages
RNN with GRU to capture user’s preference from browsing history,
while GAN-PW uses positional weight separately without efficient
weight sharing [32]; (ii) UserSim’s supervision signal enhances its
performance. (6) UserSim outperforms IRecGAN, where the user
model and next fake item producer are both involved in IRecGAN’s
generator, and its discriminator only distinguishes real and fake
items. This design breaks the naturally adversarial relationship

3586

WWW ’21, April 19-23, 2021, Ljubljana, Slovenia

10

avg_reward
~

6 | method
—— Historical Logs
5 —— |IRecGAN
—— UserSim

0 10000 20000 30000 40000 50000 60000
training_step

Figure 5: The training process of RL-based recommenders.

between user model and next fake item producer (i.e., the producer
aims to generate near-real items to fool user model, while user
model targets distinguishing real and fake items), which leads to
suboptimal performance.

To sum up, the proposed framework outperforms the state-of-
the-art baselines with significant margin, which validates its effec-
tiveness in simulating users’ behaviors in recommendation tasks.

3.3 RL-based Recommender Training

In this subsection, we evaluate the effectiveness of the proposed
simulator on training reinforcement learning based recommender
systems. Since real online environment is not available, we train a
recommender based on a deep Q-network (DQN) framework. This
off-policy reinforcement learning method can train on historical
offline user behavior logs. We compare the training process of
three recommenders with the same architecture, where the first
is directly trained based on historical offline logs, the second is
trained based on IRecGAN (the best baseline in Section 3.2), and
the third is trained based on UserSim. Note that both IRecGAN and
UserSim are learned upon the same historical offline logs. We use
the averaged rewards on the test set (say avg_reward) as metric to
evaluate the performance of recommenders.

Figure 5 illustrates the training process of the recommenders. We
can observe that: (1) In the initial training stage, the avg_reward of
all recommenders grow rapidly, then their growth speed gradually
becomes slower with more interaction data. (2) When the recom-
menders achieve convergence, the recommender trained upon User-
Sim converges to the similar avg_reward value with the one trained
upon offline logs, while IRecGAN’s recommender converges to a
distinctly different avg_reward. (3) The recommender trained upon
UserSim performs much more stably than the one trained based
upon IRecGAN.

To sum up, the above observations demonstrate that UserSim
can effectively mimic user behaviors in real-world recommender
systems. Therefore, it has the potential to take the place of real
users to train RL-based recommender systems. Note that some

WWW ’21, April 19-23, 2021, Ljubljana, Slovenia

Table 2: Generator effectiveness.

Method ROUGE-1 diff. ROUGE-2 diff.

FM 0.312 -34.5% 0.143 -35.2%
W&D 0.336 -29.3% 0.159 -27.7%
Autorec 0.361 -24.2% 0.165 -24.9%
GRU4Rec 0.380 -20.1% 0.175 -21.2%
RRN 0.415 -13.2% 0.191 -13.6%
IRGAN 0.437 -8.19% 0.202 -8.59%
SSRM 0.452 -5.05% 0.208 -5.88%
UserSim 0.476 - 0.221 -

on-policy RL algorithms such as SARSA [34] cannot be directly
trained on historical logs. Thus a simulator is necessary to train
these RL algorithms before launching them online.

3.4 Effectiveness of Generator

Our proposed generator aims to generate indistinguishable logs
(action) based on users’ browsing history (state). In other words,
it mimics the recommendation policy of the recommender system
that generates the historical logs. The aforementioned compari-
son (UserSim v.s. UserSim-d) proves that the generated logs can
enhance feedback predictions. Here, we investigate whether the
proposed generator can generate indistinguishable logs. We train
several representative recommendation algorithms based on the
historical logs, then use them to generate a sequence of recom-
mendations (with the same length of real logs), then compare the
sequence similarity of real logs and generated logs. We compare
the generator of the proposed generator with the following rep-
resentative recommender methods: FM [27], W&D [7], Autorec
[30], GRU4Rec [18], RRN [37], IRGAN [35], SSRM [17].

To evaluate the sequence similarity of real and generated logs,
we select widely used metrics in NLP community ROUGE [11],
where ROUGE-N measures the overlap ratio of N-grams between
the real and generated sentences. The results are shown in Table 2.
Compared with baselines, it can observe that the generator of User-
Sim could generate the most similar sequence with real-world logs.
This result validates that the competition between the generator
and discriminator and the proposed supervised components can
enhance the generator to capture the complex item distribution in
historical logs.

3.5 Component Anslysis

To study how the components in the generator and discrimina-
tor contribute to the performance, we systematically eliminate
the corresponding components of the simulator by defining User-
Sim’s following variants: (i) UserSim-1: This variant is a simpli-
fied version of the simulator who has the same architecture ex-
cept that the output of the discriminator is a 3-dimensional vector
output = [lyp,lrn,l¢], where each logit represents real-positive,
real-negative and fake respectively, i.e., it will not distinguish the
generated positive and negative items. (ii) UserSim-2: In this vari-
ant, we evaluate the contribution of the supervised component
LSGuP , so we eliminate the impact of Lzup by setting f = 0. (iii)
UserSim-3: This variant is to evaluate the adversarial training;

nsup

u unsu .
hence, we remove L G and L D ? from loss function.

3587

Xiangyu Zhao et al.

(a) F1 (b) AUC
0.250 0.70

0.225

0.200

0.175

use’

Figure 6: The results of component analysis.

The results are shown in Figure 6. It can be observed: (1) UserSim
performs better than UserSim-1, which demonstrates that distin-
guishing the generated positive and negative items can enhance the
performance. This also validates that the generator’s output can
be considered as augmentations of real-world data, which resolves
the data limitation challenge. (2) UserSim-2 performs worse than
UserSim, which suggests that the supervised component helps the
generator to produce more indistinguishable items. (3) UserSim-3
first trains a generator, then uses real data and generated data to
train the discriminator; while UserSim updates the generator and
discriminator iteratively. UserSim outperforms UserSim-3, which
indicates that the adversarial training can enhance both the gener-
ator (to capture complex data distribution) and the discriminator
(to classify real and fake samples).

3.6 Parametric Sensitivity Analysis

Our method has several key parameters, i.e., (1) N that controls the
length of state; (2) A that controls the contribution of the second
term in Eq (6), which classifies the generated items into positive
or negative class; (3) a that adjusts the importance of supervised
component in discriminator; and (4) that calibrates the supervised
component in generator. To study the impact of these parameters,
we investigate how the proposed framework UserSim works with
the changes of one parameter, while fixing other parameters.

The results are shown in Figure 7. We have following observa-
tions: (1) Figure 7 (a) demonstrates the parameter sensitivity of N.
We find that with the increase of N, the performance improves. To
be specific, the performance improves significantly first and then
becomes relatively stable. This result indicates that introducing
longer browsing history can enhance the performance. (2) Figure 7
(b) shows the sensitivity of A. The performance for the simulator
achieves the peak when A = 0.3. In other words, the second term in
Eq (6) indeed improves the performance of the simulator; however,
the performance mainly depends on the first term in Eq (6), which
classifies the real items into positive and negative classes. (3) Figure
7 (c) - (d) illustrate the model performance with respect to « and f.
We can observe that the simulator achieves its optimal performance
when « = 0.7 and = 0.7, while a lower/higher value of both pa-
rameters will lead to a lower F1. These observations validate that
the supervised components can enhance the performance.

UserSim: User Simulation via Supervised Generative
Adversarial Network

a)N b) A
0.25 (@) 0.24 (b)
1
A T ?
— —
o 0.20§ ,_,_0.22. PS ®
0-153 10 15 20 0287 02 03 04 05
c)a d
0.24 © 0.24 (d) B
*
To.22 T 0.22) e

0'2%.1 0.3 05 0.7 0.9 0'2%.6 0.7 08 09 1.0

Figure 7: The results of parametric analysis.

4 RELATED WORK

In this section, we briefly review works related to our study. In gen-
eral, the related work can be grouped into the following categories.
The first category related to this paper is reinforcement learn-
ing based recommender systems, which typically consider the
recommendation task as a Markov Decision Process (MDP), and
model the recommendation procedure as sequential interactions
between users and recommender system[40, 42]. A Deep Determin-
istic Policy Gradient (DDPG) algorithm is introduced to mitigate
the large action space issue in practical RL-based recommender
systems [9], where an Actor produces the optimal action based on
current state, and a Critic outputs the action-value (Q-value) for this
state-action pair. Users’ positive and negative feedback are jointly
considered in one framework to boost recommendations [45]. A
page-wise framework is proposed to jointly recommend a page of
items and display them within a 2-D page [43, 46]. A multi-agent
reinforcement learning based approach (DeepChain) is proposed
in to jointly optimize multiple recommendation strategies among
sequential scenarios [44]. A unified framework is proposed to to
jointly optimize user experience of recommendations and revenue
of advertisements [41, 47]. In news feed scenario, a DQN based
framework is proposed to handle the challenges of conventional
models [48]. Other applications includes sellers’ impression alloca-
tion [3], cold-start problem [52], long-term engagement [49] and
fairness [13], top-N recommendation [50], attacking black-box rec-
ommendations [10] and spatial recommendation [36].

The second category related to this paper is behavior simula-
tion. Reinforcement learning and supervised learning algorithms
typically learn experts’ behavior with the guidance of the rewards,
feedback or labels from real-world environment. However, deploy-
ing algorithms in real environment cost money and time, which
calls for estimation of environment to train the algorithms to learn
experts’ behavior based on the simulation of the environment, be-
fore launching the algorithms online [1, 6, 19, 31]. One of the most

3588

WWW ’21, April 19-23, 2021, Ljubljana, Slovenia

effective approaches is Learning from Demonstration (L{D), which
estimates implicit reward function from expert’s behavior state to
action mappings. Successful LfD applications include autonomous
helicopter maneuvers [29], self-driving car [2], playing table ten-
nis [4], object manipulation [25] and making coffee [33]. For exam-
ple, Ross et al. [29] develop a method that autonomously navigates
a small helicopter at low altitude in a natural forest environment.
Bojarski et al. [2] train a CNN to directly map the raw pixels of
a single front-facing camera to the steering commands. Calinon
et al. [4] propose a probabilistic method to train robust models
of human motion by imitating, e.g., playing table tennis. Sung et
al. [33] proposed a manipulation planning approach according to
the assumption that many household items share similar opera-
tional components. Zou et al. [51] propose a customer simulator,
referred to as the World Model, which is designed to simulate the
environment and handle the selection bias of logged data.

5 CONCLUSION

In this paper, we propose a novel user simulator, UserSim, based
on Generative Adversarial Network (GAN) framework, which mod-
els real users’ behaviors from users’ historical logs, and tackle the
two challenges: (i) the recommended item distribution is complex
within users’ historical logs, and (ii) labeled training data from each
user is limited. The GAN-based user simulator can naturally resolve
these two challenges and can be used to pre-train and evaluate new
recommendation algorithms before launching them online. To be
specific, the generator captures the underlying item distribution
of users’ historical logs and generates indistinguishable fake logs
that can be used as augmentations of real logs. The discriminator
can predict users’ feedback of a recommended item based on users’
browsing logs, taking advantage of both supervised and unsuper-
vised learning techniques. In order to validate the effectiveness of
the proposed user simulator, we conduct extensive experiments
based on benchmark datasets. The results show that the proposed
user simulator can improve the user behavior prediction perfor-
mance in recommendation tasks over representative baselines.

ACKNOWLEDGMENTS

This work is supported by National Science Foundation (NSF) un-
der grant numbers 1151907704, 1151928278, 11S1714741, 11S1715940,
11S1845081 and CNS1815636.

REFERENCES

[1] Xueying Bai, Jian Guan, and Hongning Wang. 2019. A Model-Based Reinforce-
ment Learning with Adversarial Training for Online Recommendation. In Ad-
vances in Neural Information Processing Systems. 10735-10746.

Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat

Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai

Zhang, et al. 2016. End to end learning for self-driving cars. arXiv preprint

arXiv:1604.07316 (2016).

Qingpeng Cai, Aris Filos-Ratsikas, Pingzhong Tang, and Yiwei Zhang. 2018.

Reinforcement Mechanism Design for e-commerce. In Proceedings of the 2018

World Wide Web Conference. International World Wide Web Conferences Steering

Committee, 1339-1348.

[4] Sylvain Calinon, Florent D’halluin, Eric L Sauser, Darwin G Caldwell, and Aude G
Billard. 2010. Learning and reproduction of gestures by imitation. IEEE Robotics
& Automation Magazine 17, 2 (2010), 44-54.

[5] Minmin Chen, Alex Beutel, Paul Covington, Sagar Jain, Francois Belletti, and
Ed H Chi. 2019. Top-k off-policy correction for a REINFORCE recommender
system. In Proceedings of the Twelfth ACM International Conference on Web Search
and Data Mining. ACM, 456-464.

[2

B3

WWW ’21, April 19-23, 2021, Ljubljana, Slovenia

l6

=

[10]

[11]

[12
[13

[14

[15

[16]

[17

=
&

[19]

[20]

[21

[22]

[26]

[27

[28]

[29]

[30

[31

Xinshi Chen, Shuang Li, Hui Li, Shaohua Jiang, Yuan Qi, and Le Song. 2019.
Generative Adversarial User Model for Reinforcement Learning Based Recom-
mendation System. In International Conference on Machine Learning. 1052-1061.
Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.
2016. Wide & deep learning for recommender systems. In Proceedings of the 1st
workshop on deep learning for recommender systems. ACM, 7-10.

Corinna Cortes and Mehryar Mohri. 2004. AUC optimization vs. error rate
minimization. In Advances in neural information processing systems. 313-320.
Gabriel Dulac-Arnold, Richard Evans, Hado van Hasselt, Peter Sunehag, Timothy
Lillicrap, Jonathan Hunt, Timothy Mann, Theophane Weber, Thomas Degris, and
Ben Coppin. 2015. Deep reinforcement learning in large discrete action spaces.
arXiv preprint arXiv:1512.07679 (2015).

Wengqi Fan, Tyler Derr, Xiangyu Zhao, Yao Ma, Hui Liu, Jianping Wang, Jiliang
Tang, and Qing Li. 2020. Attacking Black-box Recommendations via Copying
Cross-domain User Profiles. arXiv preprint arXiv:2005.08147 (2020).

Mamdouh Farouk. 2019. Measuring sentences similarity: a survey. arXiv preprint
arXiv:1910.03940 (2019).

Jim Gao. 2014. Machine learning applications for data center optimization. (2014).
Yingqgiang Ge, Shuchang Liu, Ruoyuan Gao, Yikun Xian, Yunqi Li, Xiangyu Zhao,
Changhua Pei, Fei Sun, Junfeng Ge, Wenwu Ou, et al. 2021. Towards Long-term
Fairness in Recommendation. arXiv preprint arXiv:2101.03584 (2021).

Alexandre Gilotte, Clément Calauzénes, Thomas Nedelec, Alexandre Abraham,
and Simon Dollé. 2018. Offline A/B testing for Recommender Systems. In Pro-
ceedings of the Eleventh ACM International Conference on Web Search and Data
Mining. ACM, 198-206.

Tan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. In Advances in neural information processing systems. 2672-2680.

Jie Gui, Zhenan Sun, Yonggang Wen, Dacheng Tao, and Jieping Ye. 2020. A review
on generative adversarial networks: Algorithms, theory, and applications. arXiv
preprint arXiv:2001.06937 (2020).

Lei Guo, Hongzhi Yin, Qinyong Wang, Tong Chen, Alexander Zhou, and Nguyen
Quoc Viet Hung. 2019. Streaming session-based recommendation. In Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. 1569-1577.

Balazs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2015. Session-based recommendations with recurrent neural networks. arXiv
preprint arXiv:1511.06939 (2015).

Eugene Ie, Chih-wei Hsu, Martin Mladenov, Vihan Jain, Sanmit Narvekar, Jing
Wang, Rui Wu, and Craig Boutilier. 2019. RecSim: A Configurable Simulation
Platform for Recommender Systems. arXiv preprint arXiv:1909.04847 (2019).
Ron Kohavi and Roger Longbotham. 2017. Online Controlled Experiments and
A/B Testing. Encyclopedia of machine learning and data mining 7, 8 (2017),
922-929.

Lihong Li, Wei Chu, John Langford, Taesup Moon, and Xuanhui Wang. 2012.
An unbiased offline evaluation of contextual bandit algorithms with generalized
linear models. In Proceedings of the Workshop on On-line Trading of Exploration
and Exploitation 2. 19-36.

Lihong Li, Jin Young Kim, and Imed Zitouni. 2015. Toward predicting the outcome
of an A/B experiment for search relevance. In Proceedings of the Eighth ACM
International Conference on Web Search and Data Mining. ACM, 37-46.

Pauline Luc, Camille Couprie, Soumith Chintala, and Jakob Verbeek. 2016. Se-
mantic segmentation using adversarial networks. arXiv preprint arXiv:1611.08408
(2016).

Scott Menard. 2002. Applied logistic regression analysis. Vol. 106. Sage.

Peter Pastor, Heiko Hoffmann, Tamim Asfour, and Stefan Schaal. 2009. Learning
and generalization of motor skills by learning from demonstration. In Robotics
and Automation, 2009. ICRA’09. IEEE International Conference on. IEEE, 763-768.
David Martin Powers. 2011. Evaluation: from precision, recall and F-measure to
ROC, informedness, markedness and correlation. (2011).

Steffen Rendle. 2010. Factorization machines. In Data Mining (ICDM), 2010 IEEE
10th International Conference on. IEEE, 995-1000.

David Rohde, Stephen Bonner, Travis Dunlop, Flavian Vasile, and Alexandros
Karatzoglou. 2018. RecoGym: A Reinforcement Learning Environment for the
problem of Product Recommendation in Online Advertising. arXiv preprint
arXiv:1808.00720 (2018).

Stéphane Ross, Narek Melik-Barkhudarov, Kumar Shaurya Shankar, Andreas
Wendel, Debadeepta Dey,] Andrew Bagnell, and Martial Hebert. 2013. Learning
monocular reactive uav control in cluttered natural environments. In 2013 IEEE
international conference on robotics and automation. IEEE, 1765-1772.

Suvash Sedhain, Aditya Krishna Menon, Scott Sanner, and Lexing Xie. 2015.
Autorec: Autoencoders meet collaborative filtering. In Proceedings of the 24th
international conference on World Wide Web. 111-112.

Jing-Cheng Shi, Yang Yu, Qing Da, Shi-Yong Chen, and An-Xiang Zeng. 2019.
Virtual-taobao: Virtualizing real-world online retail environment for reinforce-
ment learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 33. 4902-4909.

3589

Xiangyu Zhao et al.

[32] Hyungseok Song, Hyeryung Jang, Hai Tran Hong, Seeun Yun, Donggyu Yun,

Hyoju Chung, and Yung Yi. 2019. Solving Continual Combinatorial Selection via
Deep Reinforcement Learning. (2019).

Jaeyong Sung, Seok Hyun Jin, and Ashutosh Saxena. 2018. Robobarista: Ob-
ject part based transfer of manipulation trajectories from crowd-sourcing in 3d
pointclouds. In Robotics Research. Springer, 701-720.

Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

Jun Wang, Lantao Yu, Weinan Zhang, Yu Gong, Yinghui Xu, Benyou Wang, Peng
Zhang, and Dell Zhang. 2017. Irgan: A minimax game for unifying generative
and discriminative information retrieval models. In Proceedings of the 40th In-
ternational ACM SIGIR conference on Research and Development in Information
Retrieval. 515-524.

Yanan Wang, Tong Xu, Xin Niu, Chang Tan, Enhong Chen, and Hui Xiong. 2020.
STMARL: A Spatio-Temporal Multi-Agent Reinforcement Learning Approach
for Cooperative Traffic Light Control. IEEE Transactions on Mobile Computing
(2020).

Chao-Yuan Wu, Amr Ahmed, Alex Beutel, Alexander] Smola, and How Jing. 2017.
Recurrent recommender networks. In Proceedings of the tenth ACM international
conference on web search and data mining. 495-503.

Longgqi Yang, Yin Cui, Yuan Xuan, Chenyang Wang, Serge Belongie, and Debo-
rah Estrin. 2018. Unbiased offline recommender evaluation for missing-not-at-
random implicit feedback. In Proceedings of the 12th ACM Conference on Recom-
mender Systems. ACM, 279-287.

Scott WH Young. 2014. Improving library user experience with A/B testing:
Principles and process. Weave: Journal of Library User Experience 1, 1 (2014).
Weinan Zhang, Xiangyu Zhao, Li Zhao, Dawei Yin, Grace Hui Yang, and Alex
Beutel. 2020. Deep Reinforcement Learning for Information Retrieval: Fundamen-
tals and Advances. In Proceedings of the 43rd International ACM SIGIR Conference
on Research and Development in Information Retrieval. 2468-2471.

Xiangyu Zhao, Changsheng Gu, Haoshenglun Zhang, Xiaobing Liu, Xiwang Yang,
and Jiliang Tang. 2019. Deep Reinforcement Learning for Online Advertising in
Recommender Systems. arXiv preprint arXiv:1909.03602 (2019).

Xiangyu Zhao, Long Xia, Jiliang Tang, and Dawei Yin. 2019. Deep reinforcement
learning for search, recommendation, and online advertising: a survey by Xiangyu
Zhao, Long Xia, Jiliang Tang, and Dawei Yin with Martin Vesely as coordinator.
ACM SIGWEB Newsletter Spring (2019), 4.

Xiangyu Zhao, Long Xia, Liang Zhang, Zhuoye Ding, Dawei Yin, and Jiliang
Tang. 2018. Deep Reinforcement Learning for Page-wise Recommendations. In
Proceedings of the 12th ACM Recommender Systems Conference. ACM, 95-103.
Xiangyu Zhao, Long Xia, Lixin Zou, Hui Liu, Dawei Yin, and Jiliang Tang. 2020.
Whole-Chain Recommendations. In Proceedings of the 29th ACM International
Conference on Information & Knowledge Management. 1883-1891.

Xiangyu Zhao, Liang Zhang, Zhuoye Ding, Long Xia, Jiliang Tang, and Dawei Yin.
2018. Recommendations with Negative Feedback via Pairwise Deep Reinforce-
ment Learning. In Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. ACM, 1040-1048.

Xiangyu Zhao, Liang Zhang, Zhuoye Ding, Dawei Yin, Yihong Zhao, and Jiliang
Tang. 2017. Deep Reinforcement Learning for List-wise Recommendations. arXiv
preprint arXiv:1801.00209 (2017).

Xiangyu Zhao, Xudong Zheng, Xiwang Yang, Xiaobing Liu, and Jiliang Tang.
2020. Jointly learning to recommend and advertise. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
3319-3327.

Guanjie Zheng, Fuzheng Zhang, Zihan Zheng, Yang Xiang, Nicholas Jing Yuan,
Xing Xie, and Zhenhui Li. 2018. DRN: A Deep Reinforcement Learning Frame-
work for News Recommendation. In Proceedings of the 2018 World Wide Web
Conference on World Wide Web. International World Wide Web Conferences
Steering Committee, 167-176.

Lixin Zou, Long Xia, Zhuoye Ding, Jiaxing Song, Weidong Liu, and Dawei Yin.
2019. Reinforcement Learning to Optimize Long-term User Engagement in
Recommender Systems. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 2810-2818.

Lixin Zou, Long Xia, Zhuoye Ding, Dawei Yin, Jiaxing Song, and Weidong Liu.
2019. Reinforcement Learning to Diversify Top-N Recommendation. In Inter-
national Conference on Database Systems for Advanced Applications. Springer,
104-120.

Lixin Zou, Long Xia, Pan Du, Zhuo Zhang, Ting Bai, Weidong Liu, Jian-Yun Nie,
and Dawei Yin. 2020. Pseudo Dyna-Q: A Reinforcement Learning Framework for
Interactive Recommendation. In Proceedings of the 13th International Conference
on Web Search and Data Mining. 816—824.

Lixin Zou, Long Xia, Yulong Gu, Xiangyu Zhao, Weidong Liu, Jimmy Xiangji
Huang, and Dawei Yin. 2020. Neural Interactive Collaborative Filtering. In
Proceedings of the 43rd International ACM SIGIR Conference on Research and
Development in Information Retrieval. 749-758.

	Abstract
	1 Introduction
	2 The Proposed Simulator
	2.1 Problem Statement
	2.2 The Generator Architecture
	2.3 The Discriminator Architecture
	2.4 The Objective Function

	3 Experiments
	3.1 Experimental Settings
	3.2 Overall Performance
	3.3 RL-based Recommender Training
	3.4 Effectiveness of Generator
	3.5 Component Anslysis
	3.6 Parametric Sensitivity Analysis

	4 Related Work
	5 Conclusion
	Acknowledgments
	References

